Sunday, October 31, 2010
Friday, October 29, 2010
Thursday, October 28, 2010
Hukum Lavoiser
Sunday, October 24, 2010
Persamaan Reaksi
Representasi grafis dari persamaan reaksi pembakaran metana
Dalam sebuah persamaan reaksi, pereaksi dan produk dihubungkan melalui simbol yang berbeda-beda. Simbol → digunakan untuk reaksi searah, ⇆ untuk reaksi dua arah, dan ⇌ untuk reaksi kesetimbangan. Misalnya, persamaan reaksi pembakaran metana (suatu gas pada gas alam) oleh oksigen dituliskan sebagai berikut
CH4 + 2 O2 → CO2 + 2 H2O
Seringkali pada suatu persamaan reaksi, wujud zat yang bereaksi dituliskan dalam singkatan di sebelah kanan rumus kimia zat tersebut. Huruf s melambangkan padatan, l melambangkan cairan, g melambangkan gas, dan aq melambangkan larutan dalam air. Misalnya, reaksi padatan kalium (K) dengan air (2H2O) menghasilkan larutan kalium hidroksida (KOH) dan gas hidrogen (H2), dituliskan sebagai berikut
2K (s) + 2H2O (l) → 2KOH (aq) + H2 (g)
Selain itu, di paling kanan dari sebuah persamaan reaksi kadang-kadang juga terdapat suatu besaran atau konstanta, misalnya perubahan entalpi atau konstanta kesetimbangan. Misalnya proses Haber (reaksi sintesis amonia) dengan perubahan entalpi (ΔH) dituliskan sebagai berikut
N2(g) + 3H2(g) → 2NH3(g) ΔH = -92.4 kJ/mol.
Suatu persamaan disebut setara jika jumlah suatu unsur pada sebelah kiri persamaan sama dengan jumlah unsur tersebut di sebelah kanan, dan dalam reaksi ionik, jumlah total muatan harus setara juga.
Sumber: Dari Wikipedia bahasa Indonesia
Saturday, October 23, 2010
Friday, October 22, 2010
Latihan 1. Perhitungan Mr
Thursday, October 21, 2010
Ar dan Mr
Massa Atom Relatif (Ar) & Massa Molekul Relatif (Mr)
Dalam tulisan ini, kita akan mempelajari cara menyatakan massa sebuah atom dan molekul, serta mempelajari hubungan antara massa zat dengan jumlah partikel yang dimilikinya melalui pendekatan konsep mol.
Massa sebuah atom bergantung pada jumlah elektron, proton, dan neutron yang dimilikinya. Atom adalah partikel yang sangat kecil, sehingga kita tidak dapat menimbang massa sebuah atom tunggal. Akan tetapi, kita dapat menentukan massa suatu atom dengan membandingkannya terhadap atom lain. Dengan demikian, dibutuhkan suatu unsur yang dapat dijadikan sebagai standar pembanding.
Massa atom didefinisikan sebagai massa suatu atom dalam satuan atomic mass unit (amu) atau satuan massa atom (sma). Satu amu didefinisikan sebagai 1/12 kali massa satu atom C-12. Karbon-12 adalah salah satu isotop karbon yang memiliki 6 proton dan 6 neutron. Unsur ini dijadikan sebagai standar pembanding sebab unsur ini memiliki sifat yang sangat stabil dengan waktu paruh yang panjang. Dengan menetapkan massa atom C-12 sebesar 12 sma, kita dapat menentukan massa atom unsur lainnya. Sebagai contoh, diketahui bahwa satu atom hidrogen hanya memiliki massa 8,4% dari massa satu atom C-12. Dengan demikian, massa satu atom hidrogen adalah sebesar 8,4% x 12 sma atau 1,008 sma. Dengan perhitungan serupa, dapat diperoleh massa satu atom oksigen adalah 16,00 sma dan massa satu atom besi adalah 55,85 sma. Hal ini berarti bahwa satu atom besi memiliki massa hampir 56 kali massa satu atom hidrogen.
Massa atom relatif (Ar) suatu unsur X dapat diperoleh melalui persamaan berikut:
Ar X = massa satu atom unsur X / (1/12) x massa satu atom C-12
Selain menghitung massa atom relatif (Ar) suatu unsur, kita dapat juga menentukan massa molekul relatif (Mr) suatu senyawa. Massa molekul relatif (Mr) suatu senyawa dapat diperoleh melalui persamaan berikut:
Mr X = massa 1 molekul senyawa X / (1/12) x massa satu atom C-12
Bobot (massa) setiap atom dapat ditemukan dalam tabel periodik, sehingga massa suatu molekul dapat diperoleh dengan cara menambahkan massa setiap atom di dalam senyawa tersebut. Sebagai contoh, air, H2O, tersusun atas dua atom hidrogen dan satu atom oksigen. Dengan melihat pada tabel periodik, kita dapat melihat bahwa massa satu atom hidrogen sama dengan 1,008 sma dan massa satu atom oksigen adalah 16,00 sma. Dengan demikian, massa satu molekul air dapat diperoleh dengan menjumlahkan massa dua atom hidrogen dan massa satu atom oksigen.
Mr H2O = 2 x Ar H + 1 x Ar O = 2 x 1,008 + 1 x 16,00 = 18,016 sma
Contoh lain, pada tabel periodik, kita dapat melihat bahwa massa satu atom tembaga adalah 63,55 sma dan massa satu atom belerang adalah 32,07 sma. Sementara massa satu atom oksigen adalah 16,00 sma, sementara massa satu atom hidrogen adalah 1,008 sma. Dengan demikian, massa satu molekul CuSO4.5H2O adalah sebagai berikut:
Mr CuSO4.5H2O = 1 x Ar Cu + 1 x Ar S + 4 x Ar O + 5 x Mr H2O
= 1 x Ar Cu + 1 x Ar S + 4 x Ar O + 5 x (2 x Ar H + 1 X Ar O)
= 1 x 63,55 + 1 x 32,07 + 4 x 16,00 + 5 x (2 x 1,008 + 1 x 16,00)
= 249,700 sma
Hukum Proust
( HUKUM PERBANDINGAN TETAP )
Joseph Louis Proust,
pencetus hukum perbandingan tetap
Yaitu : “ Perbandingan massa unsur-unsur dalam suatu senyawa adalah tertentu dan tetap. ”
Massa H 2 (gram) | Massa O 2 (gram) | Massa H 2 O (gram) | Massa zat sisa |
1 | 8 | 9 | - |
2 | 16 | 18 | - |
3 | 16 | 18 | 1 gram H 2 |
3 | 25 | 27 | 1 gram O 2 |
4 | 25 | 28,125 | 0,875 gram H 2 |
Contoh soal :
Jika diketahui perbandingan massa besi (Fe) dan belerang (S) dalam pembentukan senyawa besi (II) sulfida (FeS) adalah 7 : 4 maka tentukan :
a) Massa besi yang dibutuhkan untuk bereaksi dengan 8 gram belerang!
b) Massa belerang yang tersisa, jika sebanyak 21 gram Fe direaksikan dengan 15 gram S!
c) Massa S dan massa Fe yang dibutuhkan untuk menghasilkan 22 gram senyawa FeS!
Reaksi :
Massa zat sebelum dan sesudah reaksi adalah sama, sehingga 7 gram Fe akan bereaksi dengan 4 gram S membentuk 11 gram FeS.
a) Massa S = 8 gram
Jadi massa Fe yang dibutuhkan adalah 14 gram.
b) 21 gram Fe direaksikan dengan 15 gram S, berarti :
Fe : S = 21 : 15 = 7 : 5
Belerang berlebih, berarti seluruh Fe habis bereaksi.
Massa S yang tersisa = ( 15-12 ) gram = 3 gram
Jadi massa S yang tersisa adalah 3 gram.
c) Untuk membentuk 22 gram FeS :
Jadi massa Fe dan S yang dibutuhkan adalah 14 gram dan 8 gram.
Sumber:
http://sahri.ohlog.com/hukum-perbandingan-tetap-hukum-proust.oh70785.html
Hukum Proust
( HUKUM PERBANDINGAN TETAP )
Joseph Louis Proust,
pencetus hukum perbandingan tetap
Dalam kimia, hukum perbandingan tetap atau hukum Proust (diambil dari nama kimiawan Perancis Joseph Proust) adalah hukum yang menyatakan bahwa suatu senyawa kimia terdiri dari unsur-unsur dengan perbandingan massa yang selalu tepat sama. Dengan kata lain, setiap sampel suatu senyawa memiliki komposisi unsur-unsur yang tetap. Misalnya, air terdiri dari 8/9 massa oksigen dan 1/9 massa hidrogen. Bersama dengan hukum perbandingan berganda (hukum Dalton), hukum perbandingan tetap adalah hukum dasar stoikiometri.
* Sejarah
Perbandingan tetap pertama kali dikemukakan oleh Joseph Proust, setelah serangkaian eksperimen di tahun 1797 dan 1804.[1] Hal ini telah sering diamati sejak lama sebelum itu, namun Proust-lah yang mengumpulkan bukti-bukti dari hukum ini dan mengemukakannya[2] Pada saat Proust mengemukakan hukum ini, konsep yang jelas mengenai senyawa kimia belum ada (misalnya bahwa air adalah H2O dsb.). Hukum ini memberikan kontribusi pada konsep mengenai bagaimana unsur-unsur membentuk senyawa. Pada 1803 John Dalton mengemukakan sebuah teori atom, yang berdasarkan pada hukum perbandingan tetap dan hukum perbandingan berganda, yang menjelaskan mengenai atom dan bagaimana unsur membentuk senyawa.
* Penyimpangan dari Hukum Proust
Perlu diketahui bahwa sekalipun hukum ini amat berguna dalam dasar-dasar kimia modern, hukum perbandingan tetap tidak selalu berlaku untuk semua senyawa. Senyawa yang tidak mematuhi hukum ini disebut senyawa non-stoikiometris. Perbandingan massa unsur-unsur pada senyawa non-stoikiometris berbeda-beda pada berbagai sampel. Misalnya oksida besi wüstite, memiliki perbandingan antara 0.83 hingga 0.95 atom besi untuk setiap atom oksigen. Proust tidak mengetahui hal ini karena peralatan yang ia gunakan tidak cukup akurat untuk membedakan angka ini.
Selain itu, hukum Proust juga tidak berlaku untuk senyawa-senyawa yang mengandung komposisi isotop yang berbeda. Komposisi isotop dapat berbeda sesuai sumber dari unsur yang membentuk senyawa tersebut. Perbedaan ini dapat digunakan untuk penanggalan secara kimia, karena proses-proses astronomis, atmosferis, maupun proses dalam samudera, kerak bumi dan Bumi bagian dalam kadang-kadang memiliki kecenderungan terhadap isotop berat ataupun ringan. Perbedaan yang diakibatkan amat sedikit, namun biasanya dapat diukur dengan peralatan modern. Selain itu, hukum Proust juga tidak berlaku pada polimer, baik polimer alami maupun polimer buatan.
Sumber :
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Tuesday, October 19, 2010
Nama Unsur Hangman Game
Ayo coba tebak unsur apa saja yang ada di bawah ini..
Awas and Hati-hati kalau salah anda di gantung.....
Coba Permainan Klik di bawah ini:
Nama Unsur hangman game
Cara Menghafal SPU
Menghafal Unsur Kimia Golongan A
Gol. | Jembatan Keledai |
IA | HaLiNa Kawin Robert Cs Frustasi |
IIA | Bemo Mogok Cari Serep Ban Radial |
IIIA | Bung Ali Gagal Injak Telor |
IVA | Ci Siska Genit Senang Playboy |
VA | Nembak Pacar Asal Sabar Bisa |
VIA | Orang Salo Selalu Tengok Pocong |
VIIA | Festival Celana Baru Itu Antik |
VIIIA | Heboh Negara Argentina Karena Xerangan Rindu |
Rumus Kimia Word Scramble Game
Siswa-siswi SMK Negeri 1 Bangkinang
Belajar Kimia via Webblog:
Ayo Belajar.....
Rumus Kimia Word Scramble Game
Monday, October 18, 2010
TTS 2. LAMBANG UNSUR
Selamat Mencoba…
Kamu Pasti Bisa………. SMK Bisa!!!!!
Mendatar
1. Am 2. Cl 5. Nb 8. Uuq 10. Pd 11. At 12. Au 13. Ne
15. Sb 16. F 18. Bi 19. Mo 22. I 24. Md 25. B 27. Ir
28. Nd 29. Mg 30. C
Menurun
1. Al 3. O 4. Au 5. Np 6. Os 7. U 9. Ac 14. Na 17. Mt
18. Bh 20. Xe 21. Ni 22. In 23. Y 25. Br 26. Zn
*****OOOOO*****
Lambang Unsur
Cocokkan Simbol dengan Nama Unsurnya
Silahkan mencoba...
Golongan 1 (I A):
Klik di sini
Golongan 2 (II A):
Klik di sini
Golongan 13 (III A):
Klik di sini
Golongan 14 (IV A):
Klik di sini
Golongan 15 (V A):
Klik di sini
Golongan 16 (VI A):
Klik di sini
Golongan 17 (VII A):
Klik di sini
Golongan 18 (VIII A):
Klik di sini
Good Luck Everytime
Oke......